Search results
Results from the WOW.Com Content Network
The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]
Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2]
The Non-Covalent Interactions index, commonly referred to as simply Non-Covalent Interactions (NCI) is a visualization index based in the Electron density (ρ) and the reduced density gradient (s). It is based on the empirical observation that Non-covalent interactions can be associated with the regions of small reduced density gradient at low ...
In chemistry, a metallophilic interaction is defined as a type of non-covalent attraction between heavy metal atoms. The atoms are often within Van der Waals distance of each other and are about as strong as hydrogen bonds. [1] The effect can be intramolecular or intermolecular.
Similar to these other non-covalent bonds, cation–π interactions play an important role in nature, particularly in protein structure, molecular recognition and enzyme catalysis. The effect has also been observed and put to use in synthetic systems. [1] [2] The π system above and below the benzene ring leads to a quadrupole charge distribution.
In chemistry, a pnictogen bond (PnB) is a non-covalent interaction, occurring where there is a net attractive force between an electrophilic region on a 'donor' pnictogen atom (Pn) in a molecule, and a nucleophilic region on an 'acceptor' atom, which may be in the same or another molecule. [1]
In supramolecular chemistry, [1] host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent ...