Search results
Results from the WOW.Com Content Network
Copiotrophs tend to have a lower carbon use efficiency than oligotrophs. [10] This is the ratio of carbon used for production of biomass per total carbon consumed by the organism. [ 10 ] Carbon use efficiency can be used to understand organisms lifestyles, whether they primarily create biomass or require carbon for maintenance energy.
Additionally, soil microbes contribute to the formation of stable soil organic matter through the synthesis of extracellular polymers, enzymes, and other biochemical compounds. [34] These substances help bind together soil particles, [35] forming aggregates that protect organic carbon from microbial decomposition and physical erosion. Over time ...
As a result, the carbon-to-nitrogen ratio of sinking organic carbon in the deep ocean is elevated compared to fresh surface ocean organic matter that has not been degraded. An exponential increase in C/N ratios is observed with increasing water depth—with C/N ratios reaching ten at intermediate water depths of about 1000 meters and up to 15 ...
Soil microbial communities are characterized in many different ways. The activity of microbes can be measured by their respiration and carbon dioxide release. The cellular components of microbes can be extracted from soil and genetically profiled, or microbial biomass can be calculated by weighing the soil before and after fumigation.
Chemosynthetic Microbial Mat The other process of primary production is lithoautotrophy . Lithoautotrophs use reduced chemical compounds such as hydrogen gas , hydrogen sulfide , methane , or ferrous ion to fix carbon and participate in primary production.
Organic matter is made up mostly of carbon and nitrogen, so adding a substrate containing certain ratios of these nutrients to soil may affect the microbes that are mineralizing SOM. Fertilizers, plant litter, detritus, and carbohydrate exudates from living roots, can potentially positively or negatively prime SOM decomposition. [1] [2] [3]
The aquatic microbial loop is a marine trophic pathway which incorporates dissolved organic carbon into the food chain.. The microbial loop describes a trophic pathway where, in aquatic systems, dissolved organic carbon (DOC) is returned to higher trophic levels via its incorporation into bacterial biomass, and then coupled with the classic food chain formed by phytoplankton-zooplankton-nekton.
[7] [8] [9] Microorganisms (soil microbes) are involved in biogeochemical cycles in the soil which helps in fixing nutrients, such as nitrogen, phosphorus and sulphur in the soil (environment). [10] As a consequence of the quantitative magnitude of microbial life (calculated as 5.0 × 10 30 cells, [ 11 ] [ 12 ] ) microbes, by virtue of their ...