Search results
Results from the WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]
Strictly speaking, these proofs are unnecessary, since these cases follow from the proofs for n = 3, n = 5, n = 7, respectively. Nevertheless, the reasoning of these even-exponent proofs differs from their odd-exponent counterparts. Dirichlet's proof for n = 14 was published in 1832, before Lamé's 1839 proof for n = 7.
Exponentiation is a mathematical operation, written as b n, involving two numbers, the base b and the exponent (or power) n. When n is a natural number (i.e., a positive integer ), exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases:
A quadratic equation is one which includes a term with an exponent of 2, for example, , [40] and no term with higher exponent. The name derives from the Latin quadrus , meaning square. [ 41 ] In general, a quadratic equation can be expressed in the form a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} , [ 42 ] where a is not zero (if it were ...
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.
There is no standard notation for tetration, though Knuth's up arrow notation and the left-exponent are common. Under the definition as repeated exponentiation, n a {\displaystyle {^{n}a}} means a a ⋅ ⋅ a {\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}} , where n copies of a are iterated via exponentiation, right-to-left, i.e. the application ...
The parameters of the hyperoperation hierarchy are sometimes referred to by their analogous exponentiation term; [15] so a is the base, b is the exponent (or hyperexponent), [12] and n is the rank (or grade), [6] and moreover, (,) is read as "the bth n-ation of a", e.g. (,) is read as "the 9th tetration of 7", and (,) is read as "the 789th 123 ...
Degree 7 – septic (or, less commonly, heptic) Degree 8 – octic; Degree 9 – nonic; Degree 10 – decic; Names for degree above three are based on Latin ordinal numbers, and end in -ic. This should be distinguished from the names used for the number of variables, the arity, which are based on Latin distributive numbers, and end in -ary.