enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruent number - Wikipedia

    en.wikipedia.org/wiki/Congruent_number

    if p ≡ 3 (mod 8), then p is not a congruent number, but 2 p is a congruent number. if p ≡ 5 (mod 8), then p is a congruent number. if p ≡ 7 (mod 8), then p and 2 p are congruent numbers. It is also known that in each of the congruence classes 5, 6, 7 (mod 8), for any given k there are infinitely many square-free congruent numbers with k ...

  3. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    A congruent number is defined as the area of a right triangle with rational sides. Because every congruum can be obtained (using the parameterized solution) as the area of a Pythagorean triangle, it follows that every congruum is congruent. Every congruent number is a congruum multiplied by the square of a rational number. [7]

  4. Tunnell's theorem - Wikipedia

    en.wikipedia.org/wiki/Tunnell's_theorem

    Tunnell's theorem states that supposing n is a congruent number, if n is odd then 2A n = B n and if n is even then 2C n = D n. Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for elliptic curves of the form y 2 = x 3 − n 2 x {\displaystyle y^{2}=x^{3}-n^{2}x} , these equalities are sufficient to conclude that n is a ...

  5. Table of congruences - Wikipedia

    en.wikipedia.org/wiki/Table_of_congruences

    There are other prime-related congruences that provide necessary and sufficient conditions on the primality of certain subsequences of the natural numbers. Many of these alternate statements characterizing primality are related to Wilson's theorem , or are restatements of this classical result given in terms of other special variants of ...

  6. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, then () is congruent to modulo n, where denotes Euler's totient function; that is

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d.

  8. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  9. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    For two polyhedra with the same combinatorial type (that is, the same number E of edges, the same number of faces, and the same number of sides on corresponding faces), there exists a set of E measurements that can establish whether or not the polyhedra are congruent. [7] [8] The number is tight, meaning that less than E measurements are not ...