enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...

  3. Convex hull - Wikipedia

    en.wikipedia.org/wiki/Convex_hull

    Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure

  4. Quickhull - Wikipedia

    en.wikipedia.org/wiki/Quickhull

    Input = a set S of n points Assume that there are at least 2 points in the input set S of points function QuickHull(S) is // Find convex hull from the set S of n points Convex Hull := {} Find left and right most points, say A & B, and add A & B to convex hull Segment AB divides the remaining (n − 2) points into 2 groups S1 and S2 where S1 are points in S that are on the right side of the ...

  5. Graham scan - Wikipedia

    en.wikipedia.org/wiki/Graham_scan

    A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.

  6. Dynamic convex hull - Wikipedia

    en.wikipedia.org/wiki/Dynamic_convex_hull

    The dynamic convex hull problem is a class of dynamic problems in computational geometry.The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified.

  7. Carathéodory's theorem (convex hull) - Wikipedia

    en.wikipedia.org/wiki/Carathéodory's_theorem...

    This theorem has a variant in which the convex hull is replaced by the conical hull. [10]: Thm.2.2 Let X 1, ..., X d be sets in R d and let x be a point contained in the intersection of the conical hulls of all these d sets. Then there is a set T = {x 1, ..., x d}, where x 1 ∈ X 1, ..., x d ∈ X d, such that the conical hull of T contains ...

  8. Chan's algorithm - Wikipedia

    en.wikipedia.org/wiki/Chan's_algorithm

    A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.

  9. Alpha shape - Wikipedia

    en.wikipedia.org/wiki/Alpha_shape

    Convex hull, alpha shape and minimal spanning tree of a bivariate data set. In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points. They were first defined by Edelsbrunner, Kirkpatrick & Seidel (1983).