Search results
Results from the WOW.Com Content Network
A mathematical markup language is a computer notation for representing mathematical formulae, based on mathematical notation.Specialized markup languages are necessary because computers normally deal with linear text and more limited character sets (although increasing support for Unicode is obsoleting very simple uses).
Hamilton and Perelman's work revolved around Hamilton's Ricci flow, which is a complicated system of partial differential equations defined in the field of Riemannian geometry. For his contributions to the theory of Ricci flow, Perelman was awarded the Fields Medal in 2006.
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
Indicator function: maps x to either 1 or 0, depending on whether or not x belongs to some subset. Step function: A finite linear combination of indicator functions of half-open intervals. Heaviside step function: 0 for negative arguments and 1 for positive arguments.
This is not possible here, as there is no natural order on symbols, and many symbols are used in different parts of mathematics with different meanings, often completely unrelated. Therefore, some arbitrary choices had to be made, which are summarized below. The article is split into sections that are sorted by an increasing level of technicality.
Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation
It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.
The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.