Search results
Results from the WOW.Com Content Network
Generally, if the function is any trigonometric function, and is its derivative, ∫ a cos n x d x = a n sin n x + C {\displaystyle \int a\cos nx\,dx={\frac {a}{n}}\sin nx+C} In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration .
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting = .
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.
Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.