Search results
Results from the WOW.Com Content Network
Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
The minimal polynomial f of α is unique.. To prove this, suppose that f and g are monic polynomials in J α of minimal degree n > 0. We have that r := f−g ∈ J α (because the latter is closed under addition/subtraction) and that m := deg(r) < n (because the polynomials are monic of the same degree).
The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...
In linear algebra, the minimal polynomial μ A of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μ A. The following three statements are equivalent: λ is a root of μ A, λ is a root of the characteristic polynomial χ A ...
The number N(q, n) of monic irreducible polynomials of degree n over GF(q) is given by [4] (,) = /, where μ is the Möbius function. This formula is an immediate consequence of the property of X q − X above and the Möbius inversion formula.
An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n such that F(x) divides x n − 1 is n = p m − 1. A primitive polynomial of degree m has m different roots in GF(p m), which all have order p m − 1, meaning that any of them generates the multiplicative group ...
The Conway polynomial C p,n is defined as the lexicographically minimal monic primitive polynomial of degree n over F p that is compatible with C p,m for all m dividing n.This is an inductive definition on n: the base case is C p,1 (x) = x − α where α is the lexicographically minimal primitive element of F p.
This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])