Search results
Results from the WOW.Com Content Network
A 3-port solenoid-type boost controller A 4-port solenoid-type boost controller (used for a dual-port wastegate). The purpose of a boost controller is to reduce the boost pressure seen by the wastegate's reference port, in order to trick the wastegate into allowing higher boost pressures than it was designed for.
In an internal combustion engine, a turbocharger (also known as a turbo or a turbosupercharger) is a forced induction device that is powered by the flow of exhaust gases. It uses this energy to compress the intake air, forcing more air into the engine in order to produce more power for a given displacement .
A mechanically driven supercharger offers exceptional response and low-rpm performance, as it does not rely on pressurization of the exhaust manifold (assuming that it is a positive-displacement design, such as a Roots-type or twin-screw, as opposed to a centrifugal supercharger, which does not provide substantial boost in the lower rpm range), but is less efficient than a turbocharger due to ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A turbo-compound engine is a reciprocating engine that employs a turbine to recover energy from the exhaust gases. Instead of using that energy to drive a turbocharger as found in many high-power aircraft engines , the energy is instead sent to the output shaft to increase the total power delivered by the engine.
The 1.9 kWh battery generates 11 kW of electrical power, and is situated directly between the turbine wheel and the engine's compressor. The electric motor working with the transmission allows the turbocharger to spool up almost instantly, and boost pressure builds within a very short time while simultaneously reducing turbo lag.
Output for this turbo/intercooled version was 190 hp (142 kW) and 240 N⋅m (177 lb⋅ft) for the 1987–88 models with the five-speed (T-5) manual transmission. In addition to the 1983–1984 Mustang Turbo GT and 1983–1986 Turbo Coupe, the non-intercooled version of the engine was also used in the 1985–89 Merkur XR4Ti and 1984–1986 ...
Elevated temperature levels in the supercharger directly influence discharge air temperatures that next enter the engine. Higher engine inlet air temperatures result in reduced power increases and an increased likelihood of engine damage resulting from detonation within the cylinders. See also intercooling (charge-air density increase).