Search results
Results from the WOW.Com Content Network
With the advent of C++11 the rule of three can be broadened to the rule of five (also known as "the rule of the big five" [5]) as C++11 implements move semantics, [6] allowing destination objects to grab (or steal) data from temporary objects. The following example also shows the new moving members: move constructor and move assignment operator.
In C++, by contrast, objects are copied automatically whenever a function takes an object argument by value or returns an object by value. Additionally, due to the lack of garbage collection in C++, programs will frequently copy an object whenever the ownership and lifetime of a single shared object would be unclear.
This is analogous to subclasses deferring requests to parent classes. But with inheritance, an inherited operation can always refer to the receiving object through the this member variable in C++ and self in Smalltalk. To achieve the same effect with delegation, the receiver passes itself to the delegate to let the delegated operation refer to ...
Composition over inheritance (or composite reuse principle) in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition (by containing instances of other classes that implement the desired functionality) over inheritance from a base or parent class. [2]
Frequently confused concepts are simply using another object, more precisely referred to as consultation or aggregation; and evaluating a member on one object by evaluating the corresponding member on another object, notably in the context of the receiving object, which is more precisely referred to as forwarding (when a wrapper object doesn't ...
The builder pattern is a design pattern that provides a flexible solution to various object creation problems in object-oriented programming.The builder pattern separates the construction of a complex object from its representation.
In object-oriented programming, the factory method pattern is a design pattern that uses factory methods to deal with the problem of creating objects without having to specify their exact classes. Rather than by calling a constructor , this is accomplished by invoking a factory method to create an object.
In C++, objects are created on the stack when the constructor is invoked without the new operator, and created on the heap when the constructor is invoked with the new operator. Stack objects are deleted implicitly when they go out of scope, while heap objects must be deleted implicitly by a destructor or explicitly by using the delete operator.