enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution.

  3. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [ 1 ]

  4. Category:Normality tests - Wikipedia

    en.wikipedia.org/wiki/Category:Normality_tests

    It should only contain pages that are Normality tests or lists of Normality tests, as well as subcategories containing those things (themselves set categories). Topics about Normality tests in general should be placed in relevant topic categories .

  5. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model. Suppose that a researcher wants to estimate the determinants of wage offers, but has access to wage observations for only those who work.

  6. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  7. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In statistics, D'Agostino's K 2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables.

  8. Bartlett's test - Wikipedia

    en.wikipedia.org/wiki/Bartlett's_test

    This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with (k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from independent normal distributions. Bartlett's test is sensitive to departures from normality.

  9. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .