Search results
Results from the WOW.Com Content Network
The period, the time for one complete oscillation, is given by the expression = =, which is a good approximation of the actual period when is small. Notice that in this approximation the period τ {\displaystyle \tau } is independent of the amplitude θ 0 {\displaystyle \theta _{0}} .
The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being applied on the mass, i.e. the additional constant force cannot change the period of oscillation.
The time taken for an oscillation to occur is often referred to as the oscillatory period. The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the simple harmonic oscillator and the regular periodic motion is known as simple ...
The period T is the time taken to complete one cycle of an oscillation or rotation. The frequency and the period are related by the equation [ 4 ] f = 1 T . {\displaystyle f={\frac {1}{T}}.} The term temporal frequency is used to emphasise that the frequency is characterised by the number of occurrences of a repeating event per unit time.
A nonzero constant P for which this is the case is called a period of the function. If there exists a least positive [2] constant P with this property, it is called the fundamental period (also primitive period, basic period, or prime period.) Often, "the" period of a function is used to mean its fundamental period.
The Q is equal to 2π times the energy stored in the pendulum, divided by the energy lost to friction during each oscillation period, which is the same as the energy added by the escapement each period. It can be seen that the smaller the fraction of the pendulum's energy that is lost to friction, the less energy needs to be added, the less the ...
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
The Schrödinger equation for a particle in a spherically-symmetric three-dimensional harmonic oscillator can be solved explicitly by separation of variables. This procedure is analogous to the separation performed in the hydrogen-like atom problem, but with a different spherically symmetric potential V ( r ) = 1 2 μ ω 2 r 2 , {\displaystyle ...