Search results
Results from the WOW.Com Content Network
The success of the phase-contrast microscope has led to a number of subsequent phase-imaging methods. In 1952, Georges Nomarski patented what is today known as differential interference contrast (DIC) microscopy. [8] It enhances contrast by creating artificial shadows, as if the object is illuminated from the side.
After its introduction in the 1940s, live-cell imaging rapidly became popular using phase-contrast microscopy. [11] The phase-contrast microscope was popularized through a series of time-lapse movies (see video), recorded using a photographic film camera. [12] Its inventor, Frits Zernike, was awarded the Nobel Prize in 1953. [13]
Like differential interference contrast microscopy (DIC microscopy), contrast is increased by using components in the light path which convert phase gradients in the specimen into differences in light intensity that are rendered in an image that appears three-dimensional. The 3D appearance may be misleading, as a feature which appears to cast a ...
The combination of man and machine helps explain why Google Maps is one of the most accurate sources of location information on Earth -- although the firm does have some catching up to do in space.
Phase-contrast imaging is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres). It thus enables the direct viewing of columns of atoms in a crystalline material. [20] [21] The interpretation of phase-contrast images is not a straightforward task.
The term "macroscope" is generally credited as being introduced into scientific usage by the ecologist Howard T. Odum in 1971, [9] [10] who employed it, in contrast to the microscope (which shows small objects in great detail), to represent a kind of "detail eliminator" which thus permits a better overview of ecological systems for simplified modelling and, potentially, management (Odum, 1971 ...
The use of diffraction patterns as a function of position dates back to the earliest days of STEM, for instance the early review of John M. Cowley and John C. H. Spence in 1978 [2] or the analysis in 1983 by Laurence D. Marks and David J. Smith of the orientation of different crystalline segments in nanoparticles. [3]
The non-scanning SHG microscope was used for observation of plant starch, [11] [12] megamolecule, [13] spider silk [14] [15] and so on. In 2010 SHG was extended to whole-animal in vivo imaging. [ 16 ] [ 17 ] In 2019, SHG applications widened when it was applied to the use of selectively imaging agrochemicals directly on leaf surfaces to provide ...