Search results
Results from the WOW.Com Content Network
Dyneema composite fabric (DCF) is a laminated material consisting of a grid of Dyneema threads sandwiched between two thin transparent polyester membranes. This material is very strong for its weight, and was originally developed for use in racing yacht sails under the name 'Cuben Fiber'.
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required.
Dyneema Composite Fabric (DCF), also known as Cuben Fiber (CTF3), is a high-performance non-woven composite material used in high-strength, low-weight applications. It is constructed from a thin sheet of ultra-high-molecular-weight polyethylene ( UHMWPE , "Dyneema") laminated between two sheets of polyester .
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
Textile fibers, threads, yarns and fabrics are measured in a multiplicity of units.. A fiber, a single filament of natural material, such as cotton, linen or wool, or artificial material such as nylon, polyester, metal or mineral fiber, or human-made cellulosic fibre like viscose, Modal, Lyocell or other rayon fiber is measured in terms of linear mass density, the weight of a given length of ...
Kevlar has many applications, ranging from bicycle tires and racing sails to bulletproof vests, all due to its high tensile strength-to-weight ratio; by this measure it is five times stronger than steel. [2] It is also used to make modern marching drumheads that withstand high impact; and for mooring lines and other underwater applications.
The material also exhibits relatively high thermal stability. Depending on the heating method, it will maintain its mass up to temperatures of 600–800 °C, with any drop being due to loss of absorbed water. A small loss of mass can then be seen at temperatures approaching 1,000 °C. It performs better when a slower heat ramp is utilized.