Search results
Results from the WOW.Com Content Network
The Sun, planets, moons and dwarf planets (true color, size to scale, distances not to scale) The following outline is provided as an overview of and topical guide to the Solar System: Solar System – gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of those objects that orbit the ...
For the giant planets, the "radius" is defined as the distance from the center at which the atmosphere reaches 1 bar of atmospheric pressure. [ 11 ] Because Sedna and 2002 MS 4 have no known moons, directly determining their mass is impossible without sending a probe (estimated to be from 1.7x10 21 to 6.1×10 21 kg for Sedna [ 12 ] ).
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
The Sun and planets of the Solar System (distances not to scale). The Solar System is the gravitationally bound system of the Sun and the objects that orbit it. It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc.
The Sun is moved by the gravitational pull of the planets. The center of the Sun moves around the Solar System barycenter, within a range from 0.1 to 2.2 solar radii. The Sun's motion around the barycenter approximately repeats every 179 years, rotated by about 30° due primarily to the synodic period of Jupiter and Saturn. [152]
The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.
Also listed are Stern–Levison's Λ and Soter's μ; again, the planets are orders of magnitude greater than 1 for Λ and 100 for μ, and the dwarf planets are orders of magnitude less than 1 for Λ and 100 for μ. Also shown are the distances where Π = 1 and Λ = 1 (where the body would change from being a planet to being a dwarf planet).
Water pressure of a garden hose [58] 300 to 700 kPa 50–100 psi Typical water pressure of a municipal water supply in the US [59] 358 to 524 kPa: 52-76 psi Threshold of pain for objects outside the human body hitting it [60] 400 to 600 kPa 60–90 psi Carbon dioxide pressure in a champagne bottle [61] 520 kPa 75 psi