enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. [1] In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. [2]

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    All definitions tacitly require the homogeneous relation be transitive: for all ,,, if and then . A term's definition may require additional properties that are not listed in this table. Fig. 1 The Hasse diagram of the set of all subsets of a three-element set { x , y , z } , {\displaystyle \{x,y,z\},} ordered by inclusion .

  4. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    This partition is itself the empty set; it can be interpreted as a family of subsets of the empty set, consisting of zero subsets. It is vacuously true that all of the subsets in this family are non-empty subsets of the empty set and that they are pairwise disjoint subsets of the empty set, because there are no subsets to have these unlikely ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    For instance, had been declared as a subset of , with the sets and not necessarily related to each other in any way, then would likely mean instead of . If it is needed then unless indicated otherwise, it should be assumed that X {\displaystyle X} denotes the universe set , which means that all sets that are used in the formula are subsets of X ...

  6. Independent set (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Independent_set_(graph_theory)

    The maximum independent set problem is the special case in which all weights are one. In the maximal independent set listing problem, the input is an undirected graph, and the output is a list of all its maximal independent sets. The maximum independent set problem may be solved using as a subroutine an algorithm for the maximal independent set ...

  7. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The most naïve algorithm would be to cycle through all subsets of n numbers and, for every one of them, check if the subset sums to the right number. The running time is of order O ( 2 n ⋅ n ) {\displaystyle O(2^{n}\cdot n)} , since there are 2 n {\displaystyle 2^{n}} subsets and, to check each subset, we need to sum at most n elements.

  8. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  9. Sperner's theorem - Wikipedia

    en.wikipedia.org/wiki/Sperner's_theorem

    A graded partially ordered set is said to have the Sperner property when one of its largest antichains is formed by a set of elements that all have the same rank. In this terminology, Sperner's theorem states that the partially ordered set of all subsets of a finite set, partially ordered by set inclusion, has the Sperner property.