Ad
related to: centripetal force vs radius graph maker software download
Search results
Results from the WOW.Com Content Network
At the equator, the velocity of Earth's surface is about 465 metres per second (1,674 km/h; 1,040 mph). The amount of centripetal force required to cause an object to move along a circular path with a radius of 6378 kilometres (the Earth's equatorial radius), at 465 m/s, is about 0.034 newtons per kilogram of mass. For a 10,000-gram internal ...
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Since the sum of all forces is the centripetal force, drawing centripetal force into a free body diagram is not necessary and usually not recommended. Using F net = F c {\displaystyle F_{\text{net}}=F_{c}} , we can draw free body diagrams to list all the forces acting on an object and then set it equal to F c {\displaystyle F_{c}} .
Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).
The only requirement is that the central force exactly equals the centripetal force, which determines the required angular velocity for a given circular radius. Non-central forces (i.e., those that depend on the angular variables as well as the radius) are ignored here, since they do not produce circular orbits in general.
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
Newton's derivation begins with a particle moving under an arbitrary central force F 1 (r); the motion of this particle under this force is described by its radius r(t) from the center as a function of time, and also its angle θ 1 (t). In an infinitesimal time dt, the particle sweeps out an approximate right triangle whose area is
Here Newton finds the centripetal force to produce motion in this configuration would be inversely proportional to the square of the radius vector. (Translation: 'Therefore, the centripetal force is reciprocally as L X SP², that is, (reciprocally) in the doubled ratio [i.e., square] of the distance ... .')
Ad
related to: centripetal force vs radius graph maker software download