Search results
Results from the WOW.Com Content Network
The SI unit of electric flux is the volt-meter (V·m), or, equivalently, newton-meter squared per coulomb (N·m 2 ·C −1). Thus, the unit of electric flux expressed in terms of SI base units is kg·m 3 ·s −3 ·A −1. Its dimensional formula is L 3 M T −3 I −1.
Unit name Symbol Base units E energy: ... electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E ... History of the electrical units.
Hence, units of electric flux are, in the MKS system, newtons per coulomb times meters squared, or N m 2 /C. (Electric flux density is the electric flux per unit area, and is a measure of strength of the normal component of the electric field averaged over the area of integration. Its units are N/C, the same as the electric field in MKS units.)
The weber may be defined in terms of Faraday's law, which relates a changing magnetic flux through a loop to the electric field around the loop. A change in flux of one weber per second will induce an electromotive force of one volt (produce an electric potential difference of one volt across two open-circuited terminals).
In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field , combining the two in an auxiliary field .
No charge is enclosed by the sphere. Electric flux through its surface is zero. Gauss's law may be expressed as: [6] = where Φ E is the electric flux through a closed surface S enclosing any volume V, Q is the total charge enclosed within V, and ε 0 is the electric constant.
The electric field is defined as a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal test charge at rest at that point. [2] [3] [4] The SI unit for the electric field is the volt per meter (V/m), which is equal to the newton per coulomb (N/C). [5]
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [1] [2] [3] It is used to quantify the rate of energy transfer.