Search results
Results from the WOW.Com Content Network
Converting an annual interest rate (that is to say, annual percentage yield or APY) to the monthly rate is not as simple as dividing by 12; see the formula and discussion in APR. However, if the rate is stated in terms of "APR" and not "annual interest rate", then dividing by 12 is an appropriate means of determining the monthly interest rate.
Annual percentage yield (APY) is a normalized representation of an interest rate, based on a compounding period of one year. APY figures allow a reasonable, single-point comparison of different offerings with varying compounding schedules. However, it does not account for the possibility of account fees affecting the net gain.
The interest rate on an annual equivalent basis may be referred to variously in different markets as effective annual percentage rate (EAPR), annual equivalent rate (AER), effective interest rate, effective annual rate, annual percentage yield and other terms. The effective annual rate is the total accumulated interest that would be payable up ...
Annual percentage yield. Called the APY, this is the total amount of interest you'll earn on your deposit over one year, including compound interest, expressed as a percentage. Member FDIC.
Annual percentage yield. Called the APY, this is the total amount of interest you'll earn on your deposit over one year, including compound interest, expressed as a percentage. Member FDIC.
Annual percentage yield. Called the APY, this is the total amount of interest you'll earn on your deposit over one year, including compound interest, expressed as a percentage. Member FDIC.
For example, a nominal interest rate of 6% compounded monthly is equivalent to an effective interest rate of 6.17%. 6% compounded monthly is credited as 6%/12 = 0.005 every month. After one year, the initial capital is increased by the factor (1 + 0.005) 12 ≈ 1.0617. Note that the yield increases with the frequency of compounding.
Even though the yield-to-maturity for the remaining life of the bond is just 7%, and the yield-to-maturity bargained for when the bond was purchased was only 10%, the annualized return earned over the first 10 years is 16.25%. This can be found by evaluating (1+i) from the equation (1+i) 10 = (25.84/5.73), giving 0.1625.