Search results
Results from the WOW.Com Content Network
In chemistry, a halide (rarely halogenide [1]) is a binary chemical compound, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fluoride, chloride, bromide, iodide, astatide, or theoretically tennesside compound.
The halogens may either be bonded to another element through covalent bonding or (as in many metal halides) present in the form of the halide ion. Subcategories This category has the following 13 subcategories, out of 13 total.
The Atacama Desert has large quantities of halide minerals as well as chlorates, iodates, oxyhalides, nitrates, borates and other water-soluble minerals. Not only do those minerals occur in subsurface geologic deposits, they also form crusts on the Earth's surface due to the low rainfall (the Atacama is the world's driest desert as well as one ...
In this structure both the metals and halides feature octahedral coordination geometry, in which each ion has a coordination number of six. Caesium chloride, bromide, and iodide crystallize in a body-centered cubic lattice that accommodates coordination number of eight for the larger metal cation (and the anion also).
With halide ions there are examples of all of these geometries along with some anions with octahedrally coordinated indium and with bridging halogen atoms, In 2 X 3− 9 with three bridging halogen atoms and In 2 X − 7 with just one. Additionally there are examples of indium with square planar geometry in the InX 5 2− ion.
Polyhalogen ions are a group of polyatomic cations and anions containing halogens only. The ions can be classified into two classes, isopolyhalogen ions which contain one type of halogen only, and heteropolyhalogen ions with more than one type of halogen.
The polar bond attracts a hydroxide ion, OH − (NaOH (aq) being a common source of this ion). This OH − is a nucleophile with a clearly negative charge, as it has excess electrons it donates them to the carbon, which results in a covalent bond between the two. Thus C–X is broken by heterolytic fission resulting in a halide ion, X −.
Industrially these gases are, however, produced by treatment of halide salts with sulfuric acid. Hydrogen bromide arises when hydrogen and bromine are combined at high temperatures in the presence of a platinum catalyst. The least stable hydrogen halide, HI, is produced less directly, by the reaction of iodine with hydrogen sulfide or with ...