enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lignin peroxidase - Wikipedia

    en.wikipedia.org/wiki/Lignin_peroxidase

    Lignin is found to be degraded by enzyme lignin peroxidases produced by some fungi like Phanerochaete chrysosporium. The mechanism by which lignin peroxidase (LiP) interacts with the lignin polymer involves veratrole alcohol , which is a secondary metabolite of white rot fungi that acts as a cofactor for the enzyme.

  3. Fungal extracellular enzyme activity - Wikipedia

    en.wikipedia.org/wiki/Fungal_extracellular...

    Production of lignin-peroxidase and manganese-peroxidase is the hallmark of basidiomycetes and is often used to assess basidiomycete activity, especially in biotechnology applications. [38] Most white-rot species also produce laccase, a copper-containing enzyme that degrades polymeric lignin and humic substances. [39]

  4. Lignin-modifying enzyme - Wikipedia

    en.wikipedia.org/wiki/Lignin-modifying_enzyme

    Lignin-modifying enzymes benefit industry as they can break down lignin; a common waste product of the paper and pulp industry. These enzymes have been used in the refinement of poplar as lignin inhibits the enzymatic hydrolysis of treated poplar and Lignin-modifying enzymes can efficiently degrade the lignin thus fixing this problem. [4]

  5. Laccase - Wikipedia

    en.wikipedia.org/wiki/Laccase

    Laccases (EC 1.10.3.2) are multicopper oxidases found in plants, fungi, and bacteria. Laccases oxidize a variety of phenolic substrates, performing one-electron oxidations, leading to crosslinking. For example, laccases play a role in the formation of lignin by promoting the oxidative coupling of monolignols, a family of naturally occurring ...

  6. Wood-decay fungus - Wikipedia

    en.wikipedia.org/wiki/Wood-decay_fungus

    Only later would peroxidases acquire the ability use a tryptophanyl radical, interacting with a bulky polymer at the surface of the peroxidase, to attack non-phenolic lignin. These findings highlight the importance of taking plant evolution into account when analyzing the evolution of white-rot fungus.

  7. Oxyporus - Wikipedia

    en.wikipedia.org/wiki/Oxyporus

    Oxyporus latemarginatus produces the industrially significant enzymes lignin peroxidase and manganese peroxidase (but not laccase), [9] which are used in bioremediation, biopulping, and biobleaching. The fungus was investigated for its ability to degrade lignin in kenaf (Hibiscus cannabinus) chips. [10]

  8. Animal heme-dependent peroxidases - Wikipedia

    en.wikipedia.org/wiki/Animal_heme-dependent...

    Animal heme-dependent peroxidases is a family of peroxidases.Peroxidases are found in bacteria, fungi, plants and animals. On the basis of sequence similarity, a number of animal heme peroxidases can be categorized as members of a superfamily: myeloperoxidase (MPO); eosinophil peroxidase (EPO); lactoperoxidase (LPO); thyroid peroxidase (TPO); prostaglandin H synthase (PGHS); and peroxidasin.

  9. Haem peroxidase - Wikipedia

    en.wikipedia.org/wiki/Haem_peroxidase

    It is thought that catalase-peroxidase provides protection to cells under oxidative stress. [5] Class II consists of secretory fungal peroxidases: ligninases, or lignin peroxidases (LiPs), and manganese-dependent peroxidases (MnPs). These are monomeric glycoproteins involved in the degradation of lignin. In MnP, Mn 2+ serves as the reducing ...