Search results
Results from the WOW.Com Content Network
A convective planetary boundary layer is a type of planetary boundary layer where positive buoyancy flux at the surface creates a thermal instability and thus generates additional or even major turbulence. (This is also known as having CAPE or convective available potential energy; see atmospheric convection.) A convective boundary layer is ...
The up and downdrafts of boundary layer convection is the primary way in which the atmosphere moves heat, momentum, moisture, and pollutants between the Earth's surface and the atmosphere. Thus, boundary layer convection is important in the global climate modeling, numerical weather prediction, air-quality modeling and the dynamics of numerous ...
The planetary boundary layer is characterized by turbulence during the daytime and by stability during the night. At the top of the planetary boundary layer, there is a stable layer that is frequently termed the inversion layer as temperature tends to increase with height in contrast to much of the troposphere.
An elevated inversion layer is thus a region of warm air above a region of cold air, but higher in the atmosphere (generally not touching the surface). A capping inversion occurs when there is a boundary layer with a normal temperature profile (warm air rising into cooler air) and the layer above that is an inversion layer (cooler air below ...
The depth of a vortex is usually the depth of the boundary layer, which is generally on the order of 1–2 km. A vortex pair usually has a lateral to vertical dimension ratio of around 3:1. [ 6 ] [ 7 ] [ 9 ] Experimental studies have shown that the aspect ratio (a ratio of roll wavelength to boundary layer depth) has been found to vary between ...
An atmospheric river is a weather feature that can be beneficial and crucial, but can also be a damaging event - particularly for those near the West Coast of the United States.
A schematic diagram of showing the main processes of coupled (left) and decoupled (right) stratocumulus-topped atmospheric boundary layers: primary circulation (yellow arrows), turbulence eddy cascade (circular arrows confined in an angle with extent proportional to inertial range scaling exponent p), TKE buoyancy production (red B letter of size proportional to strength), sensible and latent ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...