Search results
Results from the WOW.Com Content Network
FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG – number of FLT_RADIX-base digits in the floating-point significand for types float, double, long double, respectively FLT_MIN_EXP , DBL_MIN_EXP , LDBL_MIN_EXP – minimum negative integer such that FLT_RADIX raised to a power one less than that number is a normalized float, double, long double ...
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
If the hardware has instructions to compute half-precision math, it is often faster than single or double precision. If the system has SIMD instructions that can handle multiple floating-point numbers within one instruction, half precision can be twice as fast by operating on twice as many numbers simultaneously. [13]
converting a pointer of a base class to a pointer of a non-virtual derived class (downcasting); converting numeric data types such as enums to ints or floats . Although static_cast conversions are checked at compile time to prevent obvious incompatibilities, no run-time type checking is performed that would prevent a cast between incompatible ...
Bfloat16 is designed to maintain the number range from the 32-bit IEEE 754 single-precision floating-point format (binary32), while reducing the precision from 24 bits to 8 bits. This means that the precision is between two and three decimal digits, and bfloat16 can represent finite values up to about 3.4 × 10 38 .
In other words, to preserve n digits to the right of the decimal point, it is necessary to multiply the entire number by 10 n. In computers, which perform calculations in binary, the real number is multiplied by 2 m to preserve m digits to the right of the binary point; alternatively, one can bit shift the value m places to the left. For ...
In computer science, an integer literal is a kind of literal for an integer whose value is directly represented in source code.For example, in the assignment statement x = 1, the string 1 is an integer literal indicating the value 1, while in the statement x = 0x10 the string 0x10 is an integer literal indicating the value 16, which is represented by 10 in hexadecimal (indicated by the 0x prefix).
Bit fields can be used to reduce memory consumption when a program requires a number of integer variables which always will have low values. For example, in many systems, storing an integer value requires two bytes (16-bits) of memory; sometimes the values to be stored actually need only one or two bits.