Search results
Results from the WOW.Com Content Network
The concept of CPU-bounding was developed during early computers, when data paths between computer components were simpler, and it was possible to visually see one component working while another was idle. Example components were CPU, tape drives, hard disks, card-readers, and printers.
In Windows 2000 and Windows NT 4.0, these same displays are labeled "Mem usage" but again actually show the commit charge and commit limit. Similar displays in the Task Manager of Windows Vista and later have been changed to reflect usage of physical memory.
An idle computer has a load number of 0 (the idle process is not counted). Each process using or waiting for CPU (the ready queue or run queue) increments the load number by 1. Each process that terminates decrements it by 1. Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states.
The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-memory processes is to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt, an operating system call or another form of signal. Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term or mid-term ...
A computer's firmware may be manually updated by a user via a small utility program. In contrast, firmware in mass storage devices (hard-disk drives, optical disc drives, flash memory storage e.g. solid state drive) is less frequently updated, even when flash memory (rather than ROM, EEPROM) storage is used for the firmware.
Some second-level CPU caches run slower than the processor core. When the processor needs to access external memory, it starts placing the address of the requested information on the address bus. It then must wait for the answer, that may come back tens if not hundreds of cycles later. Each of the cycles spent waiting is called a wait state.
The CPU-bound process will get and hold the CPU. During this time, all the other processes will finish their I/O and will move into the ready queue, waiting for the CPU. While the processes wait in the ready queue, the I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst and moves to an I/O device.
Uptime is a measure of system reliability, expressed as the period of time a machine, typically a computer, has been continuously working and available.Uptime is the opposite of downtime.