Search results
Results from the WOW.Com Content Network
The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small to be seen with a microscope, in constant, random motion.
The ideal gas law can also be derived from first principles using the kinetic theory of gases, in which several simplifying assumptions are made, chief among which are that the molecules, or atoms, of the gas are point masses, possessing mass but no significant volume, and undergo only elastic collisions with each other and the sides of the ...
At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. [2] Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight.
Since the thermal velocity is only a "typical" velocity, a number of different definitions can be and are used. Taking k B {\displaystyle k_{\text{B}}} to be the Boltzmann constant , T {\displaystyle T} the absolute temperature , and m {\displaystyle m} the mass of a particle, we can write the different thermal velocities:
Kinetic theory of matter: A general account of the properties of matter, including solids liquids and gases, based around the idea that heat or temperature is a manifestation of atoms and molecules in constant agitation. Kinetic theory of gases, an account of gas properties in terms of motion and interaction of submicroscopic particles in gases
For simplicity, the gas is assumed to be an ideal gas. The gas flow is isentropic. The gas flow is constant. The gas flow is along a straight line from gas inlet to exhaust gas exit. The gas flow behavior is compressible. There are numerous applications where a steady, uniform, isentropic flow is a good approximation to the flow in conduits.
Different modes of two-phase flows. In fluid mechanics, two-phase flow is a flow of gas and liquid — a particular example of multiphase flow.Two-phase flow can occur in various forms, such as flows transitioning from pure liquid to vapor as a result of external heating, separated flows, and dispersed two-phase flows where one phase is present in the form of particles, droplets, or bubbles in ...
The Royal Institute of Technology in Stockholm carried out the first laboratory tests, and found that (a) the relative velocity between a plasma and neutral gas could be increased to the critical velocity, but then additional energy put into the system went into ionizing the neutral gas, rather than into increasing the relative velocity, (b) the critical velocity is roughly independent of the ...