Search results
Results from the WOW.Com Content Network
The bacteriophages used for cloning are the λ phage and M13 phage. [13] There is an upper limit on the amount of DNA that can be packed into a phage (a maximum of 53 kb), therefore to allow foreign DNA to be inserted into phage DNA, phage cloning vectors may need to have some non-essential genes deleted, for example the genes for lysogeny ...
The integration of phage λ takes place at a special attachment site in the bacterial and phage genomes, called att λ. The sequence of the bacterial att site is called attB, between the gal and bio operons, and consists of the parts B-O-B', whereas the complementary sequence in the circular phage genome is called attP and consists of the parts ...
After Benzer demonstrated the power of the T4 rII system for exploring the fine structure of the gene, others adapted the system to explore related problems.For example, Francis Crick and others used one of the peculiar r mutants Benzer had found (a deletion that fused the A and B cistrons of rII) to demonstrate the triplet nature of the genetic code.
Unlike commonly used plasmids, phagemid vectors differ by having the ability to be packaged into the capsid of a bacteriophage, due to their having a genetic sequence that signals for packaging. Phagemids are used in a variety of biotechnology applications; for example, they can be used in a molecular biology technique called " phage display ".
Cosmids are predominantly plasmids with a bacterial oriV, an antibiotic selection marker and a cloning site, but they carry one, or more recently two, cos sites derived from bacteriophage lambda. Depending on the particular aim of the experiment, broad host range cosmids, shuttle cosmids or 'mammalian' cosmids (linked to SV40 oriV and mammalian ...
Phage display cycle. 1) fusion proteins for a viral coat protein + the gene to be evolved (typically an antibody fragment) are expressed in bacteriophage. 2) the library of phage are washed over an immobilised target. 3) the remaining high-affinity binders are used to infect bacteria. 4) the genes encoding the high-affinity binders are isolated.
Before site specific recombination can occur, the oligonucleotide ends must be filled. The ligation of these ends generates a replication fork at each end of the transposable element. The single strand displacement causes synthesis from the un-ligated 3' hydroxyl group to form long single stranded sections adjacent to the 5' end.
The end result is the peptides produced by bacteriophage are specific. The resulting filamentous phages can infect gram-negative bacteria once again to produce phage libraries. The cycle can occur many times resulting with strong affinity binding peptides to the target.