Search results
Results from the WOW.Com Content Network
The soma of a neuron (i.e., the main part of the neuron in which the dendrites branch off of) contains many organelles, including granules called Nissl granules, which are composed largely of rough endoplasmic reticulum and free polyribosomes. [5] The cell nucleus is a key feature of the soma.
The cell bodies of unipolar neurons are always found in ganglia. Sensory reception is a peripheral function, so the cell body is in the periphery, though closer to the CNS in a ganglion. The axon projects from the dendrite endings, past the cell body in a ganglion, and into the central nervous system. Bipolar: 1 axon and 1 dendrite.
They assert the structure of the neuron is able to determine its function by dictating synapse formation. [7] The geometry of neurons often depends on the cell type and the history of received stimuli that is processed through the synapses. The shape of a neuron often directs the neuron's function by establishing its synaptic partnerships.
Furthermore, the thin filamentary extensions of neural cells, including the axon and the dendrites of neurons, are too slender and transparent to be seen with normal staining techniques. Golgi's method stains a limited number of cells at random in their entirety. The mechanism by which this happens is still largely unknown. [2]
In classic brain theory the summation of electrical inputs to the dendrites and soma (cell body) of a neuron either inhibit the neuron or excite it and set off an action potential down the axon to where it synapses with the next neuron. However, this fails to account for different varieties of synapses beyond the traditional axodendritic (axon ...
Currently, single-unit recordings provide the most precise recordings from a single neuron. A single unit is defined as a single, firing neuron whose spike potentials are distinctly isolated by a recording microelectrode. [3] The ability to record signals from neurons is centered around the electric current flow through the neuron.
The motivation for a dynamical approach to neuroscience stems from an interest in the physical complexity of neuron behavior. As an example, consider the coupled interaction between a neuron's membrane potential and the activation of ion channels throughout the neuron. As the membrane potential of a neuron increases sufficiently, channels in ...
For example (Fig. 1), in a basic neural circuit with two input neurons—A and B—that have excitatory synaptic terminals converging on a single output neuron (C), if each input neuron's EPSP is sub-threshold for an action potential at C, then C cannot fire unless the two inputs from A and B are temporally close.