Search results
Results from the WOW.Com Content Network
W − boson. The W and Z bosons are carrier particles that mediate the weak nuclear force, much as the photon is the carrier particle for the electromagnetic force ...
Because exchange of W bosons involves a transfer of electric charge (as well as a transfer of weak isospin, while weak hypercharge is not transferred), it is known as "charged current". By contrast, exchanges of Z bosons involve no transfer of electrical charge, so it is referred to as a "neutral current". In the latter case, the word "current ...
These three composite bosons are the W +, W −, and Z 0 bosons actually observed in the weak interaction. The fourth electroweak gauge boson is the photon (γ) of electromagnetism, which does not couple to any of the Higgs fields and so remains massless. [23] This theory has made a number of predictions, including a prediction of the masses of ...
where θ W is the weak mixing angle. The axes representing the particles have essentially just been rotated, in the (W 3, B) plane, by the angle θ W. This also introduces a mismatch between the mass of the Z 0 and the mass of the W ± particles (denoted as m Z and m W, respectively), = . The W 1 and W 2 bosons, in turn, combine to produce ...
W particles have electric charge – there are both positive and negative W particles – however the Z boson is also an exchange particle for the weak force but does not have any electrical charge. Exchange of a Z boson transfers momentum , spin , and energy , but leaves the interacting particles' quantum numbers unaffected – charge, flavor ...
Higgs boson production: Via gluons and top quarks: Via quarks and W or Z bosons: Quad cancellations: One of the many cancellations to the quadratic divergence to squared mass of the Higgs boson which occurs in the MSSM. Primakoff effect: production of neutral pseudoscalar mesons by photons interacting with an atomic nucleus: Delbrück scattering
Elementary bosons responsible for the four fundamental forces of nature are called force particles (gauge bosons). The strong interaction is mediated by the gluon, the weak interaction is mediated by the W and Z bosons, electromagnetism by the photon, and gravity by the graviton, which is still hypothetical.
Additionally, we know experimentally that the W and Z bosons are massive, but a boson mass term contains the combination e.g. A μ A μ, which clearly depends on the choice of gauge. Therefore, none of the standard model fermions or bosons can "begin" with mass, but must acquire it by some other mechanism.