Search results
Results from the WOW.Com Content Network
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. [4] Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will ...
The thermodynamic standard cell potential can be obtained from standard-state free energy calculations to find ΔG° and then using the equation: ΔG°= −n F E° (where E° is the cell potential and F the Faraday constant, 96,485 C/mol). For two water molecules electrolysed and hence two hydrogen molecules formed, n = 4, and
Enthalpy change of solution in water at 25 °C for some selected compounds [2] Compound ΔH o in kJ/mol; hydrochloric acid: −74.84 ammonium nitrate +25.69 ammonia: −30.50 potassium hydroxide: −57.61 caesium hydroxide: −71.55 sodium chloride +3.87 potassium chlorate +41.38 acetic acid: −1.51 sodium hydroxide: −44.50
Water molecules stay close to each other , due to the collective action of hydrogen bonds between water molecules. These hydrogen bonds are constantly breaking, with new bonds being formed with different water molecules; but at any given time in a sample of liquid water, a large portion of the molecules are held together by such bonds. [61]
Water, for example, is strongly cohesive as each molecule may make four hydrogen bonds to other water molecules in a tetrahedral configuration. This results in a relatively strong Coulomb force between molecules. In simple terms, the polarity (a state in which a molecule is oppositely charged on its poles) of water molecules allows them to be ...
Protons tunnel across a series of hydrogen bonds between hydronium ions and water molecules.. The Grotthuss mechanism (also known as proton jumping) is a model for the process by which an 'excess' proton or proton defect diffuses through the hydrogen bond network of water molecules or other hydrogen-bonded liquids through the formation and concomitant cleavage of covalent bonds involving ...
For example, the addition of hydrogen to ethene has a Gibbs free energy change of -101 kJ·mol −1, which is highly exothermic. [11] In the hydrogenation of vegetable oils and fatty acids, for example, the heat released, about 25 kcal per mole (105 kJ/mol), is sufficient to raise the temperature of the oil by 1.6–1.7 °C per iodine number drop.
Initially, there are solute molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container. Top: A single molecule moves around randomly. Middle: With more molecules, there is a clear trend where the solute fills the container more and more uniformly.