Search results
Results from the WOW.Com Content Network
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
The OSLO software is used by scientists and engineers to design lenses, reflectors, optical instruments, laser collimators, and illumination systems. It is also used for simulation and analysis of optical systems using both geometrical and physical optics. In addition to optical design and analysis, OSLO provides a complete technical software ...
Others have mentioned this, but to summarize: the Galois and Fibonacci LFSR should have the numbering of their taps reversed. Specifications like USB define Galois polynomials e.g. x^16 + x^5 + x^4 + x^3 + 1 which corresponds to taps at 16, 5, 4, 3. However, for industry, this is defined for a Galois LFSR with numbering starting from the left.
The generator is a Galois-type shift register with XOR gates placed according to powers (white numbers) of x in the generator polynomial. The message stream may be any length. After it has been shifted through the register, followed by 8 zeroes, the result in the register is the checksum. Checking received data with checksum.
In the original Grain Version 0.0 submission of Grain, one bit of the 80-bit NLFSR and four bits of the 80-bit LFSR are supplied to a nonlinear 5-to-1 Boolean function (that is chosen to be balanced, correlation immune of the first order and has algebraic degree 3) and the output is linearly combined with 1 bit of the 80-bit NLFSR and released ...
The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear-feedback shift register (LFSR) for a given binary output sequence. The algorithm will also find the minimal polynomial of a linearly recurrent sequence in an arbitrary field .
A set of Gold codes can be generated with the following steps. Pick two maximum length sequences of the same length 2 n − 1 such that their absolute cross-correlation is less than or equal to 2 (n+2)/2, where n is the size of the linear-feedback shift register used to generate the maximum length
A "slow" lens (one that is not capable of passing a lot of light through) might have a maximum aperture from 5.6 to 11, while a "fast" lens (one that can pass more light through) might have a maximum aperture from 1 to 4. Fast lenses are, by definition, larger than slow lenses (for comparable focal length), and typically cost more. [2]