Search results
Results from the WOW.Com Content Network
Decomposition microbiology can be divided into two fields of interest, namely the decomposition of plant materials and the decomposition of cadavers and carcasses. The decomposition of plant materials is commonly studied in order to understand the cycling of carbon within a given environment and to understand the subsequent impacts on soil ...
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Decomposition rates are low under very wet or very dry conditions. Decomposition rates are highest in damp, moist conditions with adequate levels of oxygen. Wet soils tend to become deficient in oxygen (this is especially true in wetlands), which slows microbial growth. In dry soils, decomposition slows as well, but bacteria continue to grow ...
The degradation rate of many organic compounds is limited by their bioavailability, which is the rate at which a substance is absorbed into a system or made available at the site of physiological activity, [11] as compounds must be released into solution before organisms can degrade them. The rate of biodegradation can be measured in a number ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
The following equation is an example, where M represents the given metal: MCO 3 → MO + CO 2. A specific example is that involving calcium carbonate: CaCO 3 → CaO + CO 2. Metal chlorates also decompose when heated. In this type of decomposition reaction, a metal chloride and oxygen gas are the products.
Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis.
where A is the area of a given leaf or all leaves of a plant, and M L is the dry mass of those leaves. Typical units are m 2 /kg or mm 2 /mg. Leaf mass per area (LMA) is its inverse and can mathematically be decomposed in two component variables, leaf thickness (LTh) and leaf density (LD): [4] = =.