Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) ... Cyclohexane: 80.74 2.79 6.55 –20.2 Diethyl ether: ... Water: 100.00 0.512 0.00
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
Critical point: 554 K (281 °C), 4070 kPa Std enthalpy change ... for Cyclohexane/Acetic acid [6] P = 101.325 kPa BP Temp. °C % by mole acetic acid liquid vapor
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Hexane (/ ˈ h ɛ k s eɪ n /) or n-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C 6 H 14. [7]Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately 69 °C (156 °F).
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
Cyclohexene is most stable in a half-chair conformation, [11] unlike the preference for a chair form of cyclohexane. One basis for the cyclohexane conformational preference for a chair is that it allows each bond of the ring to adopt a staggered conformation. For cyclohexene, however, the alkene is planar, equivalent to an eclipsed conformation ...
Cycloalkanes have higher boiling points, melting points, and densities than alkanes. This is due to stronger London forces because the ring shape allows for a larger area of contact. Even-numbered cycloalkanes tend to have higher melting points than odd-numbered cycloalkanes.