Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
In fact no method that uses only two-way random events with equal probability ("coin flipping"), repeated a bounded number of times, can produce permutations of a sequence (of more than two elements) with a uniform distribution, because every execution path will have as probability a rational number with as denominator a power of 2, while the ...
In computer programming, the act of swapping two variables refers to mutually exchanging the values of the variables. Usually, this is done with the data in memory. For example, in a program, two variables may be defined thus (in pseudocode): data_item x := 1 data_item y := 0 swap (x, y);
Swap or exchange: the two topmost items on the stack exchange places. Rotate (or Roll) : the n topmost items are moved on the stack in a rotating fashion. For example, if n = 3 , items 1, 2, and 3 on the stack are moved to positions 2, 3, and 1 on the stack, respectively.
Take an array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest number using bubble sort. In each step, elements written in bold are being compared. Three passes will be required; First Pass ( 5 1 4 2 8 ) → ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).
Single compare, double swap Compares one pointer but writes two. The Itanium's cmp8xchg16 instruction implements this, [15] where the two written pointers are adjacent. Multi-word compare-and-swap Is a generalisation of normal compare-and-swap. It can be used to atomically swap an arbitrary number of arbitrarily located memory locations.
The first two A blocks are thus modified to contain the first instance of each value within A, with the original contents of those blocks shifted over if necessary. The remaining A blocks are then inserted into B and merged using one of the two buffers as swap space. This process causes the values in that buffer to be rearranged.