Search results
Results from the WOW.Com Content Network
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
The process steps may be sequential in time or sequential in space along a stream of flowing or moving material; see Chemical plant. For a given amount of a feed (input) material or product (output) material, an expected amount of material can be determined at key steps in the process from empirical data and material balance calculations.
Cyclohexylmethanol can be produced in two step starting with the hydroformylation of cyclohexene. This process also give cyclohexane, resulting from hydrogenation. The resulting cyclohexanecarboxaldehyde is then hydrogenated to give the alcohol. [5] [6]
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
This is an accepted version of this page This is the latest accepted revision, reviewed on 4 March 2025. Manufacturing processes This section does not cite any sources.
Process flow diagram showing an extractive distillation apparatus. In this case the mixture components A and B are separated in the first column through the solvent E (recovered in the second column).
Phase diagram (left) and process flow diagram (right) of an apparatus for the azeotropic distillation with "material separation agent". In this case the phase diagram includes a zone where components are not miscible, so following the condensation of the azeotrope, it is possible to separate the liquid components through decantation.
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...