Search results
Results from the WOW.Com Content Network
This allows for many radical things to be done syntactically within Python. A new method resolution order for multiple inheritance was also adopted with Python 2.3. It is also possible to run custom code while accessing or setting attributes, though the details of those techniques have evolved between Python versions.
The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential quantification). This iteration is a boolean expression which is true if all items in my_list have counts greater than three:
Noting that an undirected simple graph can have at most (| V | 2 −| V |)/2 ≈ V 2 edges, allowing loops, we can let d = | E |/| V | 2 denote the density of the graph. Then, 8| E | > | V | 2 /8 when | E |/| V | 2 > 1/64, that is the adjacency list representation occupies more space than the adjacency matrix representation when d > 1/64. Thus ...
Python 3.15 will "Make UTF-8 mode default", [70] the mode exists in all current Python versions, but currently needs to be opted into. UTF-8 is already used, by default, on Windows (and elsewhere), for most things, but e.g. to open files it's not and enabling also makes code fully cross-platform, i.e. use UTF-8 for everything on all platforms.
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
Python Package Index (formerly the Python Cheese Shop) is the official directory of Python software libraries and modules; Useful Modules in the Python.org wiki; Organizations Using Python – a list of projects that make use of Python; Python.org editors – Multi-platform table of various Python editors
The problem is that the loop terminating condition (x != 1.1) tests for exact equality of two floating point values, and the way floating point values are represented in many computers will make this test fail, because they cannot represent the value 0.1 exactly, thus introducing rounding errors on each increment (cf. box).
If xxx2 is omitted, we get a loop with the test at the bottom, equivalent to a do while loop in many languages. If while is omitted, we get an infinite loop. The construction here can be thought of as a do loop with the while check in the middle. Hence this single construction can replace several constructions in most programming languages.