Search results
Results from the WOW.Com Content Network
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
Software validation checks that the software product satisfies or fits the intended use (high-level checking), i.e., the software meets the user requirements, not as specification artifacts or as needs of those who will operate the software only; but, as the needs of all the stakeholders (such as users, operators, administrators, managers ...
Naylor and Finger [1967] formulated a three-step approach to model validation that has been widely followed: [1] Step 1. Build a model that has high face validity. Step 2. Validate model assumptions. Step 3. Compare the model input-output transformations to corresponding input-output transformations for the real system. [5]
Requirements analysis can be a long and tiring process during which many delicate psychological skills are involved. New systems change the environment and relationships between people, so it is important to identify all the stakeholders, take into account all their needs, and ensure they understand the implications of the new systems.
The validation process begins with validation planning, system requirements definition, testing and verification activities, and validation reporting. The system lifecycle then enters the operational phase and continues until system retirement and retention of system data based on regulatory rules.
Requirements engineering (RE) [1] is the process of defining, documenting, and maintaining requirements [2] in the engineering design process. It is a common role in systems engineering and software engineering .
The main difference between the two is that validation is focused on ensuring that the device meets the needs and requirements of its intended users and the intended use environment, whereas verification is focused on ensuring that the device meets its specified design requirements.
Design Verification Test (DVT) is an intensive testing program which is performed to deliver objective, comprehensive testing verifying all product specifications, interface standards, Original Equipment Manufacturer (OEM) requirements, and diagnostic commands. It consists of the following areas of testing: