Search results
Results from the WOW.Com Content Network
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
This example uses two Galois LFRSs to produce the output pseudorandom bitstream. The Python code can be used to encrypt and decrypt a file or any bytestream ...
The Berlekamp–Massey algorithm is an algorithm that will find the shortest linear-feedback shift register (LFSR) for a given binary output sequence. The algorithm will also find the minimal polynomial of a linearly recurrent sequence in an arbitrary field .
Example of generating an 8-bit CRC. The generator is a Galois-type shift register with XOR gates placed according to powers (white numbers) of x in the generator polynomial. The message stream may be any length. After it has been shifted through the register, followed by 8 zeroes, the result in the register is the checksum.
This example will use the connection polynomial x 8 + x 4 + x 3 + x 2 + 1, and an initial register fill of 1 0 1 1 0 1 1 0. Below table lists, for each iteration of the LFSR, its intermediate output before self-shrinking, as well as the final generator output. The tap positions defined by the connection polynomial are marked with blue headings.
A set of Gold codes can be generated with the following steps. Pick two maximum length sequences of the same length 2 n − 1 such that their absolute cross-correlation is less than or equal to 2 (n+2)/2, where n is the size of the linear-feedback shift register used to generate the maximum length
Examples of this family include xorshift generators and the Mersenne twister. The latter provides a very long period (2 19937 −1) and variate uniformity, but it fails some statistical tests. [ 41 ] Lagged Fibonacci generators also fall into this category; although they use arithmetic addition, their period is ensured by an LFSR among the ...
Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method. Let α be a primitive element of GF(q m).