Search results
Results from the WOW.Com Content Network
Paramagnetic materials include aluminium, oxygen, titanium, and iron oxide (FeO). Therefore, a simple rule of thumb is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: [ 3 ] if all electrons in the particle are paired, then the substance made of this particle is diamagnetic; if it has ...
Magnetic properties arise from the spin and orbital angular momentum of the electrons contained in a compound. Compounds are diamagnetic when they contain no unpaired electrons. Molecular compounds that contain one or more unpaired electrons are paramagnetic. The magnitude of the paramagnetism is expressed as an effective magnetic moment, μ eff.
A material is paramagnetic only above its Curie temperature. Paramagnetic materials are non-magnetic when a magnetic field is absent and magnetic when a magnetic field is applied. When a magnetic field is absent, the material has disordered magnetic moments; that is, the magnetic moments are asymmetrical and not aligned.
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases. In the Curie regime,
Magnetic susceptibility indicates whether a material is attracted into or repelled out of a magnetic field. Paramagnetic materials align with the applied field and are attracted to regions of greater magnetic field. Diamagnetic materials are anti-aligned and are pushed away, toward regions of lower magnetic fields.
The difference between the chemical shift of a given nucleus in a diamagnetic vs. a paramagnetic environment is called the hyperfine shift.In solution the isotropic hyperfine chemical shift for nickelocene is −255 ppm, which is the difference between the observed shift (ca. −260 ppm) and the shift observed for a diamagnetic analogue ferrocene (ca. 5 ppm).
That is, there is no point in free space where the dipole is either stable in all directions or unstable in all directions. Magnetic dipoles aligned parallel or antiparallel to an external field with the magnitude of the dipole proportional to the external field will correspond to paramagnetic and diamagnetic materials respectively.
In a paramagnetic system, that is, a system in which the magnetization vanishes without the influence of an external magnetic field, assuming some simplifying assumptions (such as the sample system being ellipsoidal), one can derive a few compact thermodynamic relations. [4]