enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geostationary transfer orbit - Wikipedia

    en.wikipedia.org/wiki/Geostationary_transfer_orbit

    The orbital inclination of a GTO is the angle between the orbit plane and the Earth's equatorial plane. It is determined by the latitude of the launch site and the launch azimuth (direction). The inclination and eccentricity must both be reduced to zero to obtain a geostationary orbit.

  3. Orbital inclination - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination

    An inclination of 63.4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. [3] An inclination of exactly 90° is a polar orbit, in which the spacecraft passes over the poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit.

  4. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    An inclination of 63.4° is normally used to keep the perigee shift small. [15] Supersynchronous orbit: Any orbit in which the orbital period of a satellite or celestial body is greater than the rotational period of the body which contains the barycenter of the orbit.

  5. Geostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Geostationary_orbit

    A combination of lunar gravity, solar gravity, and the flattening of the Earth at its poles causes a precession motion of the orbital plane of any geostationary object, with an orbital period of about 53 years and an initial inclination gradient of about 0.85° per year, achieving a maximal inclination of 15° after 26.5 years.

  6. Orbital inclination change - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination_change

    This maneuver requires a change in the orbital velocity vector at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes). In general, inclination changes can take a very large amount of delta-v to perform, and most mission planners try ...

  7. Beta angle - Wikipedia

    en.wikipedia.org/wiki/Beta_angle

    The value of a solar beta angle for a satellite in Earth orbit can be found using the equation = ⁡ [⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ + ⁡ ⁡ ⁡ ()] where is the ecliptic true solar longitude, is the right ascension of ascending node (RAAN), is the orbit's inclination, and is the obliquity of the ecliptic (approximately 23.45 degrees for Earth at present).

  8. Satellite ground track - Wikipedia

    en.wikipedia.org/wiki/Satellite_ground_track

    Orbital inclination is the angle formed between the plane of an orbit and the equatorial plane of the Earth. The geographic latitudes covered by the ground track will range from –i to i, where i is the orbital inclination. [4] In other words, the greater the inclination of a satellite's orbit, the further north and south its ground track will ...

  9. Ariane 6 - Wikipedia

    en.wikipedia.org/wiki/Ariane_6

    Orbital inclination: 0° ... It can launch up to 4,500 kg (9,900 lb) into geosynchronous transfer orbit (GTO) and 10,350 kg (22,820 lb) into low Earth orbit (LEO ...