enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Varimax rotation - Wikipedia

    en.wikipedia.org/wiki/Varimax_rotation

    In statistics, a varimax rotation is used to simplify the expression of a particular sub-space in terms of just a few major items each. The actual coordinate system is unchanged, it is the orthogonal basis that is being rotated to align with those coordinates.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ.

  4. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    A varimax solution yields results which make it as easy as possible to identify each variable with a single factor. This is the most common orthogonal rotation option. [2] Quartimax rotation is an orthogonal rotation that maximizes the squared loadings for each variable rather than each factor.

  5. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    In oblique rotation, one may examine both a pattern matrix and a structure matrix. The structure matrix is simply the factor loading matrix as in orthogonal rotation, representing the variance in a measured variable explained by a factor on both a unique and common contributions basis.

  6. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  7. Empirical orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Empirical_orthogonal_functions

    The i th basis function is chosen to be orthogonal to the basis functions from the first through i − 1, and to minimize the residual variance. That is, the basis functions are chosen to be different from each other, and to account for as much variance as possible.

  8. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  9. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :