enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  3. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on .

  4. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  5. Skolem problem - Wikipedia

    en.wikipedia.org/wiki/Skolem_problem

    F(n) = F(n − 1) + F(n − 2) together with the initial values F(0) = 0 and F(1) = 1. The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. [2]

  6. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    The sequence is determined by the linear recurrence equation with polynomial coefficients = () + and the initial values () =, =. Applying an algorithm to find hypergeometric solutions one can find the general hypergeometric solution y ( n ) = c 2 n n ! {\displaystyle y(n)=c\,2^{n}n!} for some constant c {\textstyle c} .

  7. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence 1 , 2 , 4 , 8 , 16 , … {\displaystyle 1,2,4,8,16,\ldots } , where each number is the sum of twice the previous number, and the square number sequence 0 , 1 , 4 ...

  8. Lucas sequence - Wikipedia

    en.wikipedia.org/wiki/Lucas_sequence

    In mathematics, the Lucas sequences (,) and (,) are certain constant-recursive integer sequences that satisfy the recurrence relation = where and are fixed integers.Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences (,) and (,).

  9. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.