enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.

  3. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    In matrix theory, the rule of Sarrus is a mnemonic device for computing the determinant of a matrix named after the French mathematician Pierre Frédéric Sarrus. [ 1 ] Consider a 3 × 3 {\displaystyle 3\times 3} matrix

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Combined with swapped order of indices his formulae in modern notation read = =, = =, where , primes refer to matrices extended with the last column, and the last component of is -1. Matrix formulae to calculate rows and columns of LU factors by recursion are given in the remaining part of Banachiewicz's paper as Eq.

  5. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In particular, the diagonal entries are the principal minors of , which of course are also principal minors of , and are thus non-negative. Since the trace of a matrix is the sum of the diagonal entries, it follows that tr ⁡ ( ⋀ j M k ) ≥ 0. {\displaystyle \operatorname {tr} \left(\textstyle \bigwedge ^{j}M_{k}\right)\geq 0.}

  6. Routh–Hurwitz stability criterion - Wikipedia

    en.wikipedia.org/wiki/Routh–Hurwitz_stability...

    Compute the Sylvester matrix associated to and (). Rearrange each row in such a way that an odd row and the following one have the same number of leading zeros. Compute each principal minor of that matrix. If at least one of the minors is negative (or zero), then the polynomial f is not stable.

  7. Invariants of tensors - Wikipedia

    en.wikipedia.org/wiki/Invariants_of_tensors

    A real tensor in 3D (i.e., one with a 3x3 component matrix) has as many as six independent invariants, three being the invariants of its symmetric part and three characterizing the orientation of the axial vector of the skew-symmetric part relative to the principal directions of the symmetric part.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =

  9. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    An atomic (lower or upper) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix, a Gauss matrix, or a Gauss transformation matrix.