Search results
Results from the WOW.Com Content Network
Enthalpy-Entropy diagram of stagnation state. In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet.
In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time. [1] [2] Plotting the position of an individual parcel through time gives the pathline of the parcel. This can be visualized as sitting in a boat ...
The simplest single fluid nozzle is a plain orifice nozzle as shown in the diagram. This nozzle often produces little if any atomization, but directs the stream of liquid. If the pressure drop is high, at least 25 bars (2,500 kPa; 360 psi), the material is often finely atomized, as in a diesel injector.
The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...
This restricts fluid flow through the nozzle and generates a pressure signal. It is a widely used mechanical means of creating a high gain fluid amplifier. In industrial control systems , they played an important part in the development of pneumatic PID controllers and are still widely used today in pneumatic and hydraulic control and ...
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .