Search results
Results from the WOW.Com Content Network
Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa). [1]
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane. Near the Earth's surface, this horizontal pressure gradient force is directed from higher toward lower pressure. Its particular orientation at any one time and place depends strongly on the weather ...
A pressure gradient does not cause any single particle to drift. Nevertheless, the fluid velocity is defined by counting the particles moving through a reference area, and a pressure gradient results in more particles in one direction than in the other. The net velocity of the fluid is given by
The Minnaert resonance [1] [2] [3] is a phenomenon associated with a gas bubble pulsating at its natural frequency in a liquid, neglecting the effects of surface tension and viscous attenuation. It is the frequency of the sound made by a drop of water from a tap falling in water underneath, trapping a bubble of air as it falls.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Wavelength: λ: General definition (allows for FM): = / For non-FM waves this reduces to:
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
is the angular frequency of the first harmonic of a Fourier series of an oscillatory pressure gradient, n: are the natural numbers, P' n: is the pressure gradient magnitude for the frequency nω, ρ: is the fluid density, μ: is the dynamic viscosity, R: is the pipe radius, J 0 (·) is the Bessel function of first kind and order zero, i: is the ...