Search results
Results from the WOW.Com Content Network
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.
Often discussed in tandem with KR-20, is Kuder–Richardson Formula 21 (KR-21). [4] KR-21 is a simplified version of KR-20, which can be used when the difficulty of all items on the test are known to be equal.
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]
Note that for discrete random variables, no discretization procedure is necessary. This method is applicable to stationary streaming data as well as large data sets. For non-stationary streaming data, where the Spearman's rank correlation coefficient may change over time, the same procedure can be applied, but to a moving window of observations.
More generally, we might want to compare a model of the data with a model of transformed data. Following is an illustration of how to deal with data transforms (adapted from Burnham & Anderson (2002, §2.11.3): "Investigators should be sure that all hypotheses are modeled using the same response variable").
The log diagnostic odds ratio can also be used to study the trade-off between sensitivity and specificity [5] [6] by expressing the log diagnostic odds ratio in terms of the logit of the true positive rate (sensitivity) and false positive rate (1 − specificity), and by additionally constructing a measure, :
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...