enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    Thus, the row echelon form can be viewed as a generalization of upper triangular form for rectangular matrices. A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    A variant called rook pivoting at each step involves search of maximum element the way rook moves on a chessboard, along column, row, column again and so on till reaching a pivot maximal in both its row and column. It can be proven that for large matrices of random elements its cost of operations at each step is similarly to partial pivoting ...

  5. Reduction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(mathematics)

    In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively. Often the aim of reduction is to transform a matrix into its "row-reduced echelon form" or "row-echelon form"; this is the goal of Gaussian elimination.

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The nullity of a matrix is the dimension of the null space, and is equal to the number of columns in the reduced row echelon form that do not have pivots. [7] The rank and nullity of a matrix A with n columns are related by the equation: ⁡ + ⁡ =.

  7. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    A row can be replaced by the sum of that row and a multiple of another row. R i + k R j → R i , where i ≠ j {\displaystyle R_{i}+kR_{j}\rightarrow R_{i},{\mbox{where }}i\neq j} If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A , one multiplies A by the elementary matrix on the left, EA .

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I , so an LU decomposition exists.

  9. Reduced form - Wikipedia

    en.wikipedia.org/wiki/Reduced_form

    The reduced form of the system is: = + = +, with vector of reduced form errors that each depends on all structural errors, where the matrix A must be nonsingular for the reduced form to exist and be unique. Again, each endogenous variable depends on potentially each exogenous variable.