Search results
Results from the WOW.Com Content Network
Suppose that we model our data as = + + +. If we split our data into two groups, then we have = + + + and = + + +. The null hypothesis of the Chow test asserts that =, =, and =, and there is the assumption that the model errors are independent and identically distributed from a normal distribution with unknown variance.
In statistics, Wilks' lambda distribution (named for Samuel S. Wilks), is a probability distribution used in multivariate hypothesis testing, especially with regard to the likelihood-ratio test and multivariate analysis of variance (MANOVA).
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
The GEH formula is useful in situations such as the following: [4] [5] [6] Comparing a set of traffic volumes from manual traffic counts with a set of volumes done at the same locations using automation (e.g. a pneumatic tube traffic counter is used to check the total entering volumes at an intersection to affirm the work done by technicians doing a manual count of the turn volumes).
The Hausner ratio is a number that is correlated to the flowability of a powder or granular material. It is named after the engineer Henry H. Hausner (1900–1995 ...
The Brown–Forsythe test uses the median instead of the mean in computing the spread within each group (¯ vs. ~, above).Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good statistical power. [3]
In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]