Search results
Results from the WOW.Com Content Network
Cell damage (also known as cell injury) is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors. Cell damage can be reversible or irreversible.
The resulting overall origin of life model suggests new explanations for the emergence of the genetic code and the ribosome. It is proposed that the first protein named pF(1) obtained the energy to support the RNA World by a thermal variation of F(1) ATP synthase's binding change mechanism.
[1] [2] Eukaryotic ribosomes are also known as 80S ribosomes, referring to their sedimentation coefficients in Svedberg units, because they sediment faster than the prokaryotic ribosomes. Eukaryotic ribosomes have two unequal subunits, designated small subunit (40S) and large subunit (60S) according to their sedimentation coefficients.
The permissive temperature is the temperature at which a temperature-sensitive mutant gene product takes on a normal, functional phenotype. [2] When a temperature-sensitive mutant is grown in a permissive condition, the mutant gene product behaves normally (meaning that the phenotype is not observed), even if there is a mutant allele present.
Due to the differences in their structures, the bacterial 70S ribosomes are vulnerable to these antibiotics while the eukaryotic 80S ribosomes are not. [34] Even though mitochondria possess ribosomes similar to the bacterial ones, mitochondria are not affected by these antibiotics because they are surrounded by a double membrane that does not ...
RsfS (Ribosome silencing factor S) inhibits translation by preventing the 30S and 50S subunits of the ribosome from binding to each other again after they split during ribosome recycling. [2] It has also been suggested to be a ribosome biogenesis factor rather than a hibernation factor.
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. [1]
It is known that ribosomes pause at distinct sites, but the reasons for these pauses are mostly unknown. Also, the ribosome pauses if the pseudoknot is disrupted. 10% of the ribosome pauses at the pseudoknot and 4% of the ribosomes are terminated. Before the ribosome is obstructed it passes the pseudoknot. [17]