Search results
Results from the WOW.Com Content Network
e. In integral calculus, integration by reduction formulae is a method relying on recurrence relations. It is used when an expression containing an integer parameter, usually in the form of powers of elementary functions, or products of transcendental functions and polynomials of arbitrary degree, can't be integrated directly.
Integral of the Gaussian function, equal to sqrt (π) A graph of the function and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl ...
This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
Calculus. In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and ...
Integral equation. In mathematics, integral equations are equations in which an unknown function appears under an integral sign. [1] In mathematical notation, integral equations may thus be expressed as being of the form: where is an integral operator acting on u. Hence, integral equations may be viewed as the analog to differential equations ...
If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...
(Note that the value of the expression is independent of the value of n, which is why it does not appear in the integral.) ∫ x x ⋅ ⋅ x ⏟ m d x = ∑ n = 0 m ( − 1 ) n ( n + 1 ) n − 1 n !