enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    In mathematics, Euler's identity[note 1] (also known as Euler's equation) is the equality where. is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for .

  3. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    n -th power of matrix. The Cayley–Hamilton theorem always provides a relationship between the powers of A (though not always the simplest one), which allows one to simplify expressions involving such powers, and evaluate them without having to compute the power An or any higher powers of A. As an example, for the theorem gives.

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and ...

  5. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the ...

  6. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    Additive inverse. In mathematics, the additive inverse of an element x, denoted -x[1], is the element that when added to x, yields the additive identity, 0 [2]. In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element. In elementary mathematics, the additive inverse is often referred to as the ...

  7. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

  8. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Complex number. A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i2 = −1. In mathematics, a complex number is an element of a number system ...

  9. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    Imaginary number. An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i2 = −1. [1][2] The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary.